Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst
نویسندگان
چکیده
The effect of different cathode strategies (mullite/MnO2, Plexiglas/Gore-Tex/MnO2, mullite/coal fly ash, mullite/biochar, mullite/activated carbon) on the performance air-cathode microbial fuel cells (MFCs) was investigated. highest maximum power output observed using MnO2 catalyst pasted Gore-Tex cloth (7.7 mW/m3), yet coulombic efficiencies (CEs) were achieved (CE 23.5 ± 2.7%) and coal ash 20 3.3%) ceramic. results showed that utilization biochar as catalysts in MFC technology can be a sustainable cost-effective solution.
منابع مشابه
Development of a metal oxide cathode catalyst for air- cathode microbial fuel cells
Microbial fuel cell (MFC) converts the organic compounds to electricity. The higher cost of the cathode catalyst for oxygen reduction reaction (ORR) is one of the major limitations in the technology. Therefore, the study endeavored to introduce a novel cathode catalyst i.e. porous Co3O4 flakes for ORR in MFCs. The flakes exhibited the micropore surface area of 1.0372 m2/g. The MFC with cobalt o...
متن کاملNeutral hydrophilic cathode catalyst binders for microbial fuel cells†
Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-bpoly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increas...
متن کاملUsing cathode spacers to minimize reactor size in air cathode microbial fuel cells.
Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm(-2)) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduc...
متن کاملAir-cathode structure optimization in separator-coupled microbial fuel cells.
Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials a...
متن کاملCOD removal characteristics in air-cathode microbial fuel cells.
Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2023
ISSN: ['2073-4441']
DOI: https://doi.org/10.3390/w15050862